

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 [image: _images/aslo4.svg]sugarlabs aslo4 logo

aslo4

[image: _images/deploy-status.svg]Netlify Status [https://app.netlify.com/sites/sugarstore/deploys]

[image: _images/65d6f5534bb24ea9b2a0ca0075341c2f.svg]Codacy Badge [https://www.codacy.com/gh/sugarlabs-appstore/aslo-v4?utm_source=github.com&utm_medium=referral&utm_content=sugarlabs-appstore/aslo-v4&utm_campaign=Badge_Grade]

[image: _images/aslo41.svg]PyPI - Python Version [image: _images/aslo42.svg]PyPI - Wheel [image: _images/aslo43.svg]PyPI [https://pypi.org/project/aslo4/]
[image: _images/aslo-v4.svg]GitHub repo size [image: _images/master.svg]GitHub commits since latest release (by SemVer) [image: _images/aslo-v41.svg]GitHub [image: _images/aslo-v42.svg]Codecov

Introduction

The ASLO is an acronym for activities.sugarlabs.org. It is an activity store for
Sugar Activities. It is called aslo4,

Install from PyPI

pip3 install aslo4

Setup

	Clone the repository

git clone https://github.com/sugarlabs-appstore/aslo-v4

For a shallow clone

git clone https://github.com/sugarlabs-appstore/aslo-v4 --depth=1

	Change directory to cloned directory

cd aslo-v4

	Run the program

python3 -m aslo4

Minimal usage

ASLO4 generator (aslo4) is highly customizable. A sample usage and explanation have been provided below

Pre-requisites

	A collection of Sugar Activities in a dedicated folder. (The folder may contain other stuff). aslo4 technically looks for activity.info, but not recursively. If the directory where you have clones is called repo (for example), then aslo4 will only check repo/**/activity/activity.info exists. If, it does not match the pattern, then the folder is ignored. We have avoided recursion through directories, due to the possibility of a longer build time, etc.

	CPython 3.6+, To build python3 activities, you need python3 executable in PATH. To support python2 activities, you need python2 on PATH.

	gitexecutable, should be available in PATH

	(optional): sugar-toolkit-gtk3, sugar-toolkit (to build activities, i.e., to create bundle .xo)

NOTE: Executable python is ambiguous. It has different implementations on different linux. So we prefer to stick to stricter executable names. i.e, python2 or python3

Simple Build Commands (preferred)

	Clone a few activities, for this test case, I am considering the Pippy Activity and speak activity

mkdir activities
git clone https://github.com/sugarlabs/Pippy.git activities/Pippy
git clone https://github.com/sugarlabs/speak.git activities/speak

	To list all activities
The ./activities contains the folders Pippy and speak. The names could be different too. But each of the
folder must contain a ./<activity_name>/activity/activity.info to be detected as an activity.

python -m aslo4 -i ./activities --list-activities

	To build .xo

python -m aslo4 -i ./activities -b

This command will generate Pippy-9.xo in ./activities/Pippy/dist/Pippy-9.xo and speak-X.xo in ./activities/speak/dist/speak-X.xo

	To create ASLO4:

python -m aslo4 --input-directory ./activities --pull-static-css-js-html ./aslo4-static --generate-static-html --build-xo

This command will automatically extract the bundles from the dist folders of the respective activities, and parse
NEWS from ./activities/Pippy/NEWS and get attributes from ./activities/Pippy/activity/activity.info

Alternative build method (without Activity Source)

This part provides instructions to build the aslo4 without cloning the activity / by only providing the finally built
bundle .xo.

	Place all the bundles *.xo in a folder, say bundles

mkdir bundles
cp /path/to/some/bundles/*.xo . # copies all the bundles from /path/to/some/bundles to the current directory `bundles`

	List all the activities to make sure the *.xo are detected

python3 -m aslo4 -i ./bundles --list-activities

	Now create the appstrore

python3 -m aslo4 -i ./bundles --generate-sitemap --pull-static-css-js-html ./aslo4-static

Both the methods mentioned with build the aslo4 in aslo4-compiled directory. (The name saas will be changed in future) which can be overriden by using -o flag

These commands will create a minimal aslo4 activity library.

For advanced usage, see Usage

Usage

$ python3 -m aslo4 --help
usage: ASLO4 generator [-h] [-i INPUT_DIRECTORY] [-o OUTPUT_DIRECTORY] [-b]
 [--build-entrypoint BUILD_ENTRYPOINT] [--build-override]
 [--build-chdir] [-l] [-g] [-x GENERATE_SITEMAP] [-v]
 [-p PULL_STATIC_CSS_JS_HTML] [-u] [-P] [-s] [-f] [-y] [-c] [-z]
 [--version]

Generates static HTML files for ASLOv4

optional arguments:
 -h, --help show this help message and exit
 -i INPUT_DIRECTORY, --input-directory INPUT_DIRECTORY
 Provide the directory to scan for Sugar activity bundles *.xo
 -o OUTPUT_DIRECTORY, --output-directory OUTPUT_DIRECTORY
 Provide the directory to output the parsed website for ASLOv4
 -b, --build-xo Generate XO bundles for a large number of directories
 --build-entrypoint BUILD_ENTRYPOINT
 Specify a path to any Linux compatible script which is intended to be
 executed on every build
 --build-override Override `python setup.py dist_xo` with --build-entrypoint argument shell
 script
 --build-chdir Changes directory to Activity dir
 -l, --list-activities
 Lists all the activities available in the directory
 -g, --generate-static-html
 Start the process of HTML generation. (pass -b, if you are unsure if
 bundles are already created)
 -x GENERATE_SITEMAP, --generate-sitemap GENERATE_SITEMAP
 Generate a sitemap.xml file to the output directory
 -v, --verbose More verbose logging
 -p PULL_STATIC_CSS_JS_HTML, --pull-static-css-js-html PULL_STATIC_CSS_JS_HTML
 Provide the path to js, css and index.html (ideally from
 $PWD/aslo4-static)
 -u, --unique-icons Provides a unique icon name based on bundle id
 -P, --disable-progress-bar
 Provides a unique icon name based on bundle id
 -s, --include-screenshots
 Includes screenshots of activity if its found as
 <activity>/screenshots/*.png
 -f, --include-flatpaks
 Includes a flatpak description card if the activity has a valid flatpak
 registered under flathub.org
 -y, --noconfirm Replace output directory (default: always ask)
 -c, --no-colors Suppress colors in terminal (default: env ANSI_COLORS_DISABLED)
 -z, --include-python2
 Include python2 support (sugar-activity)
 --version Show the version

Parameters

	-i INPUT_DIRECTORY: is a directory containing cloned activities or unzipped bundles.
If bundles are pre-generated, add the activity.info, place the bundles in dist directory as
convention

	-o OUTPUT_DIRECTORY : directory to output the website

	-b --build-xo : Iterate through all the directories as provided in the INPUT_DIRECTORY abd generate .xo

	-g --generate-static-html : compiles the information in activity.info to create HTML files

All sub-directories of bundles directory will be scanned for activity
bundles i.e. .xo files.

TODO

	[x] Create search function js file, JSON data file & html page stitching them together

	[] NOTE: how will I ensure that results are presented in some order when more than one search result is of equal standing in term of keywords match/ranking etc. Popularity/download counts or newest/last updated?

	[x] Python script to automatically add all apps to aslo4, generate html pages and append entry to JSON search index file.

	[x] Create demo website

	[x] Add copyright & license information

	[x] For production version, compress index.json file. Also use compressed version of jquery.

	[] in parent directory of website write a script to start static file server serving website sub-directory. This will be used when not using web server such as Nginx or Apache for acting as backend eg. a user can start server from usb stick.

	[x] in live website, a link to download entire website (as pre generated zip file?)

Design choices

Relative path of files instead of absolute

Since aslo4 can be started just by opening index.html or any other html file in browser rather than first starting a server (even simple localhost one), keeping paths relative have advantage over absolute as they won’t break and work even when any html file is opened directly in browser. One caveat will be that moving file from one directory to another will break its references. Script generating static pages need to keep this in mind i.e. must calculate references dynamically rather than hard coding them.

CORS considerations

Since aslo4 is supposed to work even without starting a static file serving server i.e. by opening absolutely any HTML file in aslo4 website directory, only way I found that nowadays browsers allow file to be loaded is when it’s included by the HTML file opened itself. Files cannot be dynamically loaded later. ~this rules out all ajax calls in design of app store.~ I have used AJAX calls :smile:

Thankfully, we can ask browser to defer loading of some files and wait for those files (search index) to be loaded. Instead of setting a asynchronous sleeping counter to check if search index is loaded, it’s better if search index itself tell that it has loaded and we than perform any search in queue.
Credit: sphinx-doc code.

jQuery framework

jQuery library is used as its lightweight and reduce a lot of code footprint (making project easy to maintain). Its more than enough as per our project requirement.

Code guide

Tip: if you don’t have many activity bundles to test with than download [https://github.com/tony37/Sugaractivities/archive/master.zip] or clone [https://github.com/tony37/Sugaractivities.git] Tony’s repo. It contains many (outdated) bundles in /activities directory.

/generator/main.py (written as generator below) uses /website template to build website in /website directory.

generator takes two arguments

	directory of bundles - Directory and all sub-directories are recursively scanned for .xo files

	directory of website template - website will be generated in this directory

License

AGPL-3.0-or-later. See LICENSE for more information.

Copyright (C) 2020

Manish [https://github.com/free-libre-software] sugar@radii.dev,Srevin Saju [https://github.com/srevinsaju] srevinsaju@sugarlabs.org

Credits

	Includes jQuery [https://jquery.org/] library (JS Foundation and other contributors)

aslo4-static

The static files for aslo4-static

 _static/ajax-loader.gif

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

